Modeling of Direct Gas Injection in Internal Combustion Engines

A. Y. Deshmukh1, C. Giefer1, M. Khosravi2, H. Pitsch1

1 Institute for Combustion Technology, RWTH Aachen University
2 Ford Research and Advanced Engineering, Ford Werke GmbH
Acknowledgements

- This work was performed within the Ford RWTH-Aachen Research Alliance Project FA-0099 funded by the Ford Motor Company.

- The experimental data used for comparison was provided by Delphi.

- Licenses of CONVERGE software and support were provided by Convergent Science Inc.

- License of compressible LES solver CHRIS was provided by Cascade Technologies Inc.

- Simulations were performed with computing resources granted by RWTH Aachen University under project thes0382 and JARA0117.
Contents

• Motivation and Challenges
• Simulation Setup
• Nozzle Flow Model
• Coupling with CONVERGE
• Results
• Summary & Outlook
Motivation:
Spark-Ignited Direct Injection Engine with CNG as Fuel

• Emissions
 – CNG composition\(^1\): \(70\text{-}95\% \text{CH}_4\)
 – High H/C ratio leads to lower \(\text{CO}_2\) emissions (upto \(25\%\) reduction\(^3\))
 – Lower particulate emissions\(^2\)

• Potentially higher thermal efficiency
 – High resistance to knock => High compression ratio

• Direct Injection vs Port Injection
 – Higher volumetric efficiency

➢ Design and optimization of DI CNG engines using numerical simulations (URANS)

However, this is challenging

\(^2\) INGAS- Integrated GAS Powertrain, Project Final Report.
Challenges in DI CNG Simulations

• Direct gas injector: Poppet-type valves
 – Small and complex gas passages (order of micrometer)
 • Small mesh size (10-20 µm) required to resolve flow in the gaps

• Compressible flow in gas passages
 – High pressure ratios: Supersonic velocities (~1000 m/s)
 • Under/Over-expanded configuration leading to expansion waves or compression shocks
 • Small time-step of order of 10 nanoseconds on coarse mesh
 – Typical duration of injection in an engine: 3-6 ms
 - Simulation time for a full engine cycle including injection: 3-4 weeks

➢ First focus on injection process
Simulation Setup

- Axi-symmetric cylindrical domain
 - Diameter: 75 mm, Length 82.5 mm
- Injected fluid: **Helium**
- Fluid in cylinder: **Air** (77% N\(_2\), 23% O\(_2\) by mass)
- Boundary conditions:
 - Inlet total pressure: **15 bar**
 - Inlet temperature: **298 K**
 - Injector walls: **Adiabatic**
- Initial conditions:
 - Pressure: **1.01325 bar**
 - Temperature: **298 K**
- Duration of Injection: **0.8 ms**
• Base size: 2 mm
• Fixed Embedding as shown in Figure
• No adaptive mesh refinement (AMR)
Nozzle Flow Model

• Scale separation
 • Separate nozzle flow from the full simulation: Develop a fast and accurate model
 • 3D simulation of the downstream region

➤ Model the poppet-type valve as a duct with varying area of cross section

![Diagram of nozzle flow model with poppet-type valve and duct with varying area of cross section.](image)
Solve one-dimensional (1D) system of inviscid Euler equations for the duct with varying area

\[\frac{\partial \rho A}{\partial t} + \frac{\partial \rho u A}{\partial s} = 0 \]
\[\frac{\partial \rho u A}{\partial t} + \frac{\partial (\rho u^2 + P)A}{\partial s} = -P \frac{\partial A}{\partial s} \]
\[\frac{\partial \rho E A}{\partial t} + \frac{\partial (\rho E + P)u A}{\partial s} = -P \frac{\partial A}{\partial s} \]
\[A = A(s, t) \]
\[\frac{\partial A}{\partial t} = 0, \text{for fixed needle lift} \]
\[\frac{\partial A}{\partial t} \neq 0, \text{for moving needle} \]

- Solved using MUSCL scheme (upto 2nd order spatial accuracy) and forward Euler time integration scheme
- CFL: 0.3
1D Code Validation: Comparison with 3D LES* of Nozzle at Steady State

- Helium at nozzle pressure ratio of 15
- Reasonable prediction of the nozzle internal flow using 1D code

* LES was performed using CHRIS solver developed by Cascade Technologies Inc.
Coupling of 1D code to CONVERGE using mass, momentum, and energy sources
Simulation Cases

<table>
<thead>
<tr>
<th>No.</th>
<th>Case</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3D valve with fixed needle lift</td>
<td>Reference case</td>
</tr>
<tr>
<td>2</td>
<td>1D valve model with fixed needle lift</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3D valve with needle lift profile</td>
<td>Reference case</td>
</tr>
<tr>
<td>4</td>
<td>1D valve model with needle lift profile</td>
<td></td>
</tr>
</tbody>
</table>

• **CONVERGE Setup:**
 - URANS with **RNG k-epsilon** turbulence model
 - Second order numerical scheme with fully implicit time integration

• **Experimental data using Schlieren imaging provided by Delphi**
 - Injection into open ambient conditions
 - Injection pressure: 16 bar
Results: Fixed Needle

3D Valve Geometry

1D Valve Model

t = 800.021 µs
t = 800.064 µs
Quantitative Parameters

- Axial Penetration Length (APL)
- Maximum Width (MW)

- Area of Jet (AJ)
- Volume of Jet (VJ)
Quantitative Comparison
Fixed Needle

- Reasonable agreement between Full 3D nozzle and 1D nozzle flow model
Needle Opening Effects using 1D Code

Needle Lift Vs. Time

Needle Lift [μm] vs. Time [μs]

Normalized Area [-]

Mach Number [-]

Pressure [bar]

Needle Lift Vs. Time

Normalized Area [-]

Mach Number [-]

Pressure [bar]
Results: Needle Lift Profile

3D Valve Geometry

1D Valve Model

t = 805.005 μs

t = 800.143 μs
Quantitative Comparison Moving Needle

- Initial non-linear behavior captured well with 3D valve geometry, but later deviates from experiments

This is still a work in progress
Reduction in Computational Cost

Time-step relative to minimum time-step in 3D

![Graph showing Time-step relative to minimum time-step in 3D with different cases: 3D-FN, 1D-FN, 3D-MN, 1D-MN.]

- Computational cost reduced by a factor of 5-6
A one dimensional nozzle flow model was developed for a poppet-type gas injector.

The 1D code is coupled to CONVERGE and the results with fixed needle lift agree with full 3D case and reasonably with experiments.

Computational time reduced by a factor of 5-6 by increasing the simulation time-step using the nozzle flow model.

Next

Further investigation of effect of needle opening on gas jet evolution

Application to full engine simulations
Thank you for your attention

Abhishek Y. Deshmukh

PhD Student
Institute for Combustion Technology
RWTH Aachen University
Templergraben 64
52056 Aachen
Germany

Tel: +49-241-8094622
Fax: +49-241-8092923
EMail: a.deshmukh@itv.rwth-aachen.de
WWW: http://www.itv.rwth-aachen.de